Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Issue 3, Volume 12, 2024
Issue 2, Volume 12, 2024
Issue 1, Volume 12, 2024
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Issue 6, Volume 11, 2023
Issue 5, Volume 11, 2023
Issue 4, Volume 11, 2023
Issue 3, Volume 11, 2023
Issue 2, Volume 11, 2023
Issue 1, Volume 11, 2023
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Issue 4, Volume 10, 2022
Issue 3, Volume 10, 2022
Issue 2, Volume 10, 2022
Issue 1, Volume 10, 2022
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Issue 4, Volume 9, 2021
Issue 3, Volume 9, 2021
Issue 2, Volume 9, 2021
Issue 1, Volume 9, 2021
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Issue 3, Volume 8, 2020
Issue 2, Volume 8, 2020
Issue 1, Volume 8, 2020
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Issue 3, Volume 7, 2019
Issue 2, Volume 7, 2019
Issue 1, Volume 7, 2019
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Issue 4, Volume 6, 2018
Issue 3, Volume 6, 2018
Issue 2, Volume 6, 2018
Issue 1, Volume 6, 2018
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Issue 4, Volume 5, 2017
Issue 3, Volume 5, 2017
Issue 2, Volume 5, 2017
Issue 1, Volume 5, 2017
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Issue 6, Volume 4, 2016
Issue 5, Volume 4, 2016
Issue 4, Volume 4, 2016
Issue 3, Volume 4, 2016
Issue 2, Volume 4, 2016
Issue 1, Volume 4, 2016
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Issue 5, Volume 3, 2015
Issue 4, Volume 3, 2015
Issue 3, Volume 3, 2015
Issue 2, Volume 3, 2015
Issue 1, Volume 3, 2015
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Issue 6, Volume 2, 2014
Issue 5, Volume 2, 2014
Issue 3A, Volume 2, 2014
Issue 4, Volume 2, 2014
Issue 3, Volume 2, 2014
Issue 2, Volume 2, 2014
Issue 1, Volume 2, 2014
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
Issue 6, Volume 1, 2013
Issue 5, Volume 1, 2013
Issue 4, Volume 1, 2013
Issue 3, Volume 1, 2013
Issue 2, Volume 1, 2013
Issue 1, Volume 1, 2013
Journal of Business and Management Sciences. 2014, 2(3), 79-82
DOI: 10.12691/JBMS-2-3-3
Original Research

An Order Level Inventory Model for Deteriorating Items with Time – Quadratic Demand and Partial Backlogging

J. Jagadeeswari1, and P. K. Chenniappan2

1Department of Mathematics Sri Ramakrishna Engineering College Coimbatore, Tamilnadu, India

2Department of Mathematics Government Arts College (Autonomous) Coimbatore, Tamilnadu, India

Pub. Date: October 07, 2014

Cite this paper

J. Jagadeeswari and P. K. Chenniappan. An Order Level Inventory Model for Deteriorating Items with Time – Quadratic Demand and Partial Backlogging. Journal of Business and Management Sciences. 2014; 2(3):79-82. doi: 10.12691/JBMS-2-3-3

Abstract

In this paper, a deterministic inventory model is investigated for deteriorating items in which the demand is time quadratic and shortages are allowed and partially backlogged. The backlogging rate is assumed to be dependent on the length of the waiting time for the next replenishment. The longer the waiting time is, the smaller the backlogging rate would be. The deterioration rate is assumed to be constant.

Keywords

inventory, deteriorating items, shortages, time – quadratic demand, partial backlogging

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Silver, E.A., Pyke, D.F., and Peterson, R., 1998, Inventory Management and Production Planning and Scheduling, John Wiley and Sons, New York.
 
[2]  Raafat, E., 1991, Survey of Literature on continuously deteriorating inventory model, Journal of Operational Research Society, 42, 27-37.
 
[3]  Chang H.J. and Dye C.Y., 1999, An EOQ model for deteriorating items with time varying demand and partial backlogging, Journal of Operational Research Society, 50, 1176-1182.
 
[4]  Goyal, S.K., and Giri, B.C., 2001, Recent trends in modeling of deteriorating inventory, European Journal of Operational Research, 134, 1-16.
 
[5]  Teng, J. T. and Chang, C. T., 2005, Economic production quantity models for deteriorating items with price and stock dependent demand, Computers and Operational Research, 32, 297-308
 
[6]  S.R. Singh and T.J. Singh. 2007, An EOQ Inventory model with Weibull Distribution deterioration, Ramp type demand and Partial Backlogging, Indian Journal of Mathematics and Mathematical Sciences, 3 (2), 127-137.
 
[7]  T.J. Singh, S.R. Singh and R. Dutt, 2009, An EOQ model for perishable items with power demand and partial backlogging, International Journal of Production Economics, 15 (1), 65-72.
 
[8]  You S.P., 2005, Inventory policy for products with price and time dependent demands, Journal of Operational Research Society, 56, 870-873.
 
[9]  Pareek S., Mishra V. K and Rani S., 2009, An Inventory model for time dependent deteriorating item with salvage value and shortages, Mathematics today, 25, 31-39.
 
[10]  Hamid Bahari, 1989, Replenishment schedule for deteriorating items with time proportional demand, Journal of Operations Research Society, 40, 75-81.
 
[11]  Donaldson, W. A, 1979, Inventory replenishment policy for a linear trend in demand-an analytical solution, Operational Research Quarterly, 28, 663-670.
 
[12]  Dave, U. and Patel, L. K, 1981, (T, Si) policy inventory model for deteriorating items with time proportional demand, Journal of Operational Research Society, 32, 137-142.
 
[13]  Sachan, R. S, 1984, On (T, Si) inventory policy model for deteriorating items with time proportional demand, Journal of Operational Research Society, 35, 1013-1019.
 
[14]  Lin C., Tan B. and Lee W.C., 2000, An EOQ model for deteriorating items with time-varying demand and shortages, International Journal of System Science, 31 (3), 390-400.
 
[15]  Hariga M., 1996, Optimal EOQ models for deteriorating items with time-varying demand, Journal of Operational Research Society, 47, 1228-1246.